حل عددی معادله فرارفت دوبعدی در هندسه کروی روی یک شبکه یین- یَنگ با استفاده از روش مک‌کورمک فشرده مرتبه چهارم

Authors

  • رسول میرزائی شیری دانشجوی دکترای هواشناسی، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران
  • سرمد قادر دانشیار، گروه فیزیک فضا، موسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران
Abstract:

با توجه به هندسه تقریباً کروی جو و اقیانوس، حل عددی معادلات حاکم بر این لایه­ها نیازمند استفاده از یک شبکه کروی مناسب است. شبکه یین- یَنگ یکی از انواع شبکه­های هم­پوشان است. این شبکه ترکیبی از دو شبکه به نام­های یین و یَنگ، با یک هم‌پوشانی مختصر است که هر دو، شبکه­هایی متعامد بر پایه شبکه متداول طول و عرض جغرافیایی هستند. هیچ نقطه تکینه‌ای روی این شبکه وجود ندارد و فاصله­بندی شبکه‌ای آن شبه­یکنواخت است. در نقاط مرزی هر دو مؤلفه شبکه‌ای آن به استفاده از روش­های درون­یابی نیاز است. در این پژوهش، معادله فرارفت دوبعدی در یک آزمون موردی استاندارد شناخته­شده با استفاده از روش مک­کورمک فشرده مرتبه چهارم با پیمایش زمانی رونگِ- کوتای مرتبه چهارم روی یک شبکه یین- یَنگ به­طور عددی حل شده است. برای ایجاد امکان مقایسه نحوه عملکرد الگوریتم توسعه­داده­شده روی شبکه یین- یَنگ، این الگوریتم روی شبکه کروی استاندارد بر پایه طول و عرض جغرافیایی نیز پیاده­سازی شده است. نتایج نشان می­دهند که استفاده از روش­های مک­کورمک فشرده مرتبه چهارم برای حل معادله فرارفت دوبعدی در هندسه کروی روی شبکه یین- یَنگ، در کاهش هزینه محاسباتی بسیار مؤثر بوده است، اما با محاسبه خطا با استفاده از نُرم­های قدرمطلق، مربع و بی­نهایت، افزایش خطا در حدود یک مرتبه بزرگی نسبت به حل عددی این معادله با همین روش روی شبکه بر پایه طول و عرض جغرافیایی مشاهده می­شود که این خطا می­تواند به­دلیل استفاده از درون­یابی در محاسبات باشد. به­هرحال، دقت این روش روی این شبکه قابل قبول است و نتایج کیفی این حل عددی نیز این موضوع را تأیید می­کنند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه حل عددی معادله فرارفت دوبعدی در هندسه کروی روی سه نوع شبکه یین- یَنگ

لایه‌های مختلف کره زمین ازجمله اقیانوس‌ها و جو، هندسه تقریباً کروی دارند و با توجه به پیچیدگی‌های موجود در شارش‌های جوی و اقیانوسی، استفاده از یک شبکه کروی مناسب برای حل عددی معادلات حاکم بر این شارش‌ها ضروری است. شبکه یین- یَنگ یکی از انواع شبکه‌های کروی هم‌پوشان است. این شبکه حاصل ترکیب دو شبکه به نام‌های یین و یَنگ با یک سطح هم‌پوشانی است که مقدار این هم‌پوشانی قابلیت تغییر دارد. در ادامه به بر...

full text

حل عددی مسئله تنظیم راسبی غیرخطی ناپایای دوبُعدی با استفاده از روش فشرده مک‌کورمک مرتبه چهارم

در این مقاله حل عددی مسئله تنظیم راسبی غیرخطی ناپایا که یکی از فرایند‌های مهم دینامیکی در جوّ و اقیانوس است، در دو حالت یک‌بُعدی و دوبُعدی با استفاده از روش فشرده مک‌کورمک مرتبه چهارم ارائه می‌شود. ابتدا به نحوه و چگونگی به‌دست آوردن روابط این روش اشاره می‌شود. سپس برای بررسی عملکرد این روش در مقایسه با روش‌های مرتبه دوم مرکزی، مک‌کورمک مرتبه دوم و فشرده مرتبه چهارم از دو معادله مدل که دارای حل‌ها...

full text

حل عددی شکل پایستار معادلات تراکمپذیر دوبعدی و ناآب‌ایستایی جوّ با روش فشرده مککورمک

یکی از زمینه‌های پژوهشی مورد توجه در ارتباط با حل عددی معادلات حاکم بر جو، افزایش دقت عددی شبیه‌سازی‌ها می‌‌باشد. در این پژوهش روش مککورمک فشرده مرتبه چهارم با پیشروی زمانی رنگ-کوتا مورد توجه قرارگرفته است. روش مککورمک فشرده مرتبه چهارم با پیشروی زمانی رنگ-کوتای چهارمرحله‌ای برای حل عددی معادلات تراکم‌پذیر دوبعدی و ناآب‌ایستایی جو مورداستفاده قرارگرفته و نتایج آن با روش‌های مککورمک مرتبه دوم و ...

full text

شبیه‌سازی عددی جریان گرانی کف روی سطح شیب‌دار با استفاده از روش فشرده مرتبه چهارم

در تحقیق حاضر حل عددی معادلات حاکم بر جریان گرانی روی سطح شیب‌دار با استفاده از روش فشرده مرتبه چهارم به‌منزلة روشی با توانایی تفکیک زیاد معرفی می‌شود. گسسته‌سازی مکانی معادلات حاکم با استفاده از دو روش تفاضل متناهی فشرده مرتبه چهارم و تفاضل متناهی مرتبه دوم مرکزی و گسسته‌سازی بخش زمانی معادلات با استفاده از روش لیپ‌فراگ پیشگو-مصحح صورت می‌گیرد. شبیه‌سازی برای دو رژیم شارش متفاوت با شوری‌های مت...

full text

حل عددی معادلات بوسینسک تراکم‌ناپذیر با استفاده از روش فشرده مرتبه چهارم: بررسی موردی شارش گرانی تبادلی

در تحقیق حاضر حل عددی معادلات حاکم بر جریان گرانی در قالب شارش تبادلی (lock-exchange) با استفاده از روش فشرده مرتبه چهارم عرضه می‌شود. برای سنجش توانایی روش فشرده مرتبه چهارم در مسائل غیر‌خطی که به حالت واقعی نزدیک‌تر هستند از مسئله موردی جریان گرانی در قالب شارش گرانی تبادلی به‌صورت جریان گرانی مسطح و استوانه‌ای استفاده می‌کنیم. در این کار علاوه بر عرضه نحوه اِعمال روش فشرده مرتبه چهارم به معاد...

full text

حل عددی معادلات آب کم‌عمق دو لایه بر حسب متغیرهای فشارورد و کژفشار با استفاده از روش فشرده مرتبه چهارم

در پژوهش حاضر، روش فشرده مرتبه چهارم برای حل عددی معادلات آب کم‌عمق دولایه در صفحه f برحسب متغیرهای تاوایی، واگرایی و ارتفاع به‌کار گرفته می‌شود. با درنظر گرفتن متغیرهای فشارورد و کژفشار، این معادلات به دو بخش فشاورد و کژفشار تقسیم می‌شوند، به‌گونه‌ای که هر بخش به‌طور مجزا حل می‌شود. برای گسسته‌سازی مکانی معادلات، علاوه بر روش فشرده مرتبه چهارم از روش مرتبه دوم مرکزی نیز استفاده شده است تا نتای...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 2

pages  36- 50

publication date 2019-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023